

Introduction to C++

Not an expert!

Thanks to these websites – go here for good tutorials
https://www.w3schools.com/cpp/default.asp
https://www.learncpp.com/

https://www.w3schools.com/cpp/default.asp
https://www.learncpp.com/

What I use c++ for
● Data analysis
● Automation

– Simulations; changing run files between runs

I am NOT an object-oriented programmer
There are structures in C++ for this, but I’ve never really used them

Why C++?
Examples:

● Python
● Java
● C++/C
● Machine code

High-Level

Low-Level Really difficult

Easier

Fast and efficient

Slow but convenient

Basics
● Basic Structure

– Functions
● Variables

– Datatypes
● Operators
● Compile
● Strings

Google is your friend

● Input & Output
● Conditionals

– If statements
– Switch

● Loops
– While & For

● Arrays

What to do now
● Create a file “<filename>.cpp”
● Open it in your favourite text editor
● Try out stuff that I talk about

Basic Stuff
● Comments:

– // line comment
– /* block comment */

● Put ; after EVERY … SINGLE … LINE
● Main function: (every file needs this)

int main () { // code goes in here }

Functions

● Return: int, double, void
● Inputs: datatype & parameter name

return datatype function name (inputs) {
function definition
}

If declared in same document as main function, it can be
called at any time inside the main function
Though it has to be defined before the main function (above)

Variables
datatype variable name = value;

● You always need to define datatype for variables
● Define variables with or without a value

– int a = 2 ; int a;
● Define more than one variable on the same line

– int a, b, c;
● Constants cannot be changed (const int a = 2)

Datatypes
● int = whole numbers (no decimals)
● float = fractional numbers
● double = fractional numbers (but longer this time)
● boolean = true or false
● char = single characters/letters
● string = more than one character (needs #include <string>)

Bonus: “\n” & endl symbolises a new line

Operators

Operator Name Description Example
+ Addition Add variables 2 + 2 = 4
- Subtraction Subtract variables 4 – 2 = 2
* Multiplication Multiply variables 2 * 2 = 4
/ Division Divides variables 4 / 2 = 2

% Modulus Returns division remainder 5 % 2 = 1 (5 = 2*2 + 1)

++ Increment Increase value by 1 2++ = 3
-- Decrement Decrease value by 1 2-- = 1

For numbers (int, float, double)

Strings
● Add them: + or .append()

– string full = first + second;
– string full = first.append(second)

● Get length of string: .lenght() or .size()
● Get to characters in strings:

– string something = “something”;
– something[0] = s, something[1] = o, etc.

You cannot add
things with

different
datatypes!!

Indexing from 0!!

Compile
g++ filename.cpp -o executable_filename

● -o: is called a flag
– You can add other flags with -x (where x can be

various letters)
– o specifies the name of the executable file, if you

don’t include this the file will just be called “a.out”

Compile
g++ filename.cpp -o executable_filename

● You will get errors
(usually helpful so you can figure out what went wrong)
– Usually you just forgot to put a ; at the end of a line

Input & Output

● cout: standard output

● cin: standard input

#include <iostream>

using namespace std;
(this specifies that the standard
library is used, so that you don’t
have to write std::cout or std::cin
every time)

Input & Output
● cout: standard output

– cout << “text \n”;
● Prints the word “text” and changes line

– cout << text << endl;
● Prints the content of the variable text and changes line

– cout << “This is the text variable: “ << text;
● Prints the string followed by the content of the variable text
● This does not change to a new line, next output will be put on the

same line

Input & Output
● cin: standard input

int variable;
cin >> variable

● Program will wait for the user to input something in the
command line

Exercise
● Make simple calculator:

– Get two numbers from the user (just do integers)
● Explain this using outputs

– Add numbers together and output them

If … Else if … Else Statements
if (condition){

// code will be executed if this condition is
true

}
else if (condition){

// code will be executed if this condition is
true

}
else {

// code will be executed if none of the
conditions are true

}

● Use conditional
operators
– (>, <, >=, etc.)

● Can only do if-
statement on it’s own

Operators
Operator Name Returns true Returns false

== Equal to 2 == 2 2 == 1
!= Not equal to 2 != 1 2 != 2
> Greater than 2 > 1 1 > 2
< Less than 1 < 2 2 < 1

>= Greater than or equal to 1 >= 1 1 >= 2
<= Less than or equal to 1 <= 1 2 <= 1
&& Logical AND Returns true if both statements are true,

otherwise returns false
|| Logical OR Returns true if one of the statements are true,

otherwise returns false
! Logical NOT Reverses result; returns true if result is false,

and vice versa

Switch statements
switch (expression){

case x:
// code if expression == x
break;

case y:
// code if expression == y
break;

default:
// if none of the cases match
the expression in

}

● Break & Continue:
– Break: breaks out of

current loop/switch
– Continue: break

current iteration of
loop

Loops
while (condition) {

// run code while condition is true

}

do {
// run code while condition is true

}
while (condition)

for (statement 1; statement 2;
statement 3) {

// run code

}

for (int i=0; i < 5; i++){
cout << i << endl;

}

Arrays
datatype variable_name[length of array];
datatype variable_name[length of array] = { x, y, z }

● Access array element by; variable_name[index]
– Indexing starts from zero

string days[7] = {“Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”}

cout << days[4] << endl; // this will print out Fri

Libraries
● Very different to python, there are some

libraries for functions, but mostly you have to
write functions yourself

● #include <library_name>
● Now you can just the library’s functions as if

they were functions you have written in the file

Libraries

● Iostream
(input and output)

● Fstream
(read & write to files)

● String
(operations for strings)

● Cmath
(mathematical operations)

● String
(operations for strings)

Most commonly used libraries;

Defining Functions in Separate Files
● Cleaner main function

file
● Define and write out

functions in a
separate file

● Use forward
deceleration
– Declare “empty”

function prototype in
main file

Defining Functions in Separate Files

int add(int x, int y);

int main() {
int sum = add(2,2);
// sum = 2 + 2 = 4
return 0;

}

int add(int x, int y){
return x + y;

}

Main.cpp Add.cpp

Header File
● Don’t want to declare

functions in the main
file

● Move declarations to
separate file

● #include
“header_file_name.h”

Header File

#include “add.h”

int main() {
int sum = add(2,2);
// sum = 2 + 2 = 4
return 0;

}

int add(int x, int y){
return x + y;

}

Main.cpp add.cpp

int add(int x, int y);

add.h

Compile
g++ filename.cpp -o executable_filename

● If your header files are not located in the same
directory as your main file

● -I/<path_to_header_file>

Plotting
● Use other programs

● Examples;
– GnuPlot
– ROOT

● There are C++
packages/libraries
– I’ve never used one

How to structure a c++ program?
● Write out a plan for what you need to do

– Figure out the general structure
● Define the overall variables that you will need

(including their datatype)
● Define functions in separate file

General good practise
● Define functions outside main function, call

them inside the main function
● Use indentation and write comments!
● Give variables useful names

– Not too long, but not too short (‘numberOfpeople’ or ‘n’)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

